Abstract

Nowadays, the electromagnetic interference (EMI) shielding materials with an excellent electrical features, favorable flexibility and low density are the admirable desires that represent great challenges. Therefore, n-type bismuth telluride nanorods with diameter of 41.3 ± 5 nm (n-Bi2Te3) were incorporated into a p-type poly(3,4-ethylene-dioxythiophene):poly (styrenesulphonate) (p-PEDOT:PSS) to fabricate a (p-PEDOT:PSS/n-Bi2Te3) films for the electromagnetic interference shielding applications for the first time. Besides, the impact of n-Bi2Te3 nanorods on the electrical conductivity and the electromagnetic interference (EMI) shielding functions of p-PEDOT:PSS/n-Bi2Te3 films has been explored. The electrical conductivity (σ) has gradually increased with the n-Bi2Te3 nanorods in the shield films to obtain the highest value of 106.73 ± 6 S/cm at 16 wt%. Moreover, the total shielding effectiveness (SET) has also dramatically increased with the n-Bi2Te3 nanorods to obtain the highest value of 42.02 dB at 12 GHz for 16 wt%. The reflection mode is the dominance contribution in the shielding effectiveness process, presenting a good reflector of EM waves. Furthermore, the shield films have displayed a high mechanical performance with young modulus of 1.9 ± 0.3 GPa and tensile strength of 42.5 ± 5 MPa at 16 wt%. It can be suggested that these p-PEDOT:PSS/n-Bi2Te3 shields can be functionalized in many fields like electromagnetic shielding interference technology, military, electronic, smart fabric, wearable and biological apparatuses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call