Abstract

The traditional assays and diagnostic methods are time-consuming and expensive. As the COVID-19 pandemic is expected to remain for a while, it is demanded to develop an efficient diagnosis system. This chapter is designed to investigate how to incorporate data-driven approaches to the construction of a smart health framework for COVID-19. Topics cover a broad range of smart diagnosis innovations for supporting current assays and diagnostics, such as data analysis for nucleic acid tests, machine learning-based serological signatures identification, medical image classification using deep learning, and decision support system for automatic diagnosis with clinical information. Each topic has been illustrated and discussed throughout methodologies, data collections, experimental designs and results, limitations, and potential improvements. All applicational potentials have been examined with real-world datasets. The findings conclude that big data and AI work for providing insightful suggestions on multiple diagnostic assays and COVID-19 detection approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.