Abstract

Realizing smart surfaces with switchable wettability inspired by nature continues to be fascinating as well as challenging. Herein, we present a versatile dip-coating approach to fabricate smart polymer-functionalized flexible surfaces with photoswitchable superwettability. Decorated with novel acrylate copolymers bearing a trifluoromethyl side chain and fluorine-containing azobenzene derivative moieties, the modified cotton fabric possesses a rose petal-like superhydrophobicity with contact angles larger than 150° and high water adhesion. This smart surface exhibits rapid phototriggered wettability transformation between superhydrophobicity and superhydrophilicity via alternate irradiation with ultraviolet and visible light, respectively. Meanwhile, the as-prepared flexible smart surfaces have excellent chemical and physical stabilities, which could tolerate harsh environmental conditions and repetitive mechanical deformation (e.g., stretching, curling, folding, and twisting) as well as multiple washing. More importantly, based on the excellent photocontrollability, various erasable and rewritable patterns with distinct wetting properties upon selective photoirradiation can be obtained. This simple strategy and the developed smart surface may find more advanced potential applications in controllable liquid transport, patterning droplet microarrays, and microfluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.