Abstract

Responsive slippery lubricant-infused porous surfaces (SLIPSs), featuring excellent liquid repelling/sliding capabilities in response to external stimuli, have attracted great attention in smart droplet manipulations. However, most of the reported responsive SLIPSs function under a single stimulus. Here, we report a kind of smart slippery surface capable of on-demand control between sliding and pinning for water droplets via alternately freezing/thawing the stretchable polydimethylsiloxane sheet in different strains. Diverse parameters are quantified to investigate the critical sliding volume of the droplet, including lubricant infusion amount, laser-scanning power, and pillar spacing. By virtue of the cooperation of temperature and force fields acting on the SLIPS, we demonstrate the intriguing applications including controllable chemical reaction and on-demand electrical circuit control. We envision that this dual-responsive surface should provide more possibilities in smart control of microscale droplets, especially in active vaccine-involved biochemical microreactions where a lower temperature is highly favored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.