Abstract

Vulnerabilities in smart contracts may trigger serious security events, and the detection of smart contract vulnerabilities has become a significant problem. In this paper, to solve the limitations of current deep learning-based vulnerability detection methods in extracting various code critical features, using the multi-scale cascade encoder architecture as the backbone, we propose a novel Multi-Scale Encoder Vulnerability Detection (MEVD) approach to hit well-known high-risk vulnerabilities in smart contracts. Firstly, we use the gating mechanism to design a unique Surface Feature Encoder (SFE) to enrich the semantic information of code features. Then, by combining a Base Transformer Encoder (BTE) and a Detail CNN Encoder (DCE), we introduce a dual-branch encoder to capture the global structure and local detail features of the smart contract code, respectively. Finally, to focus the model’s attention on vulnerability-related characteristics, we employ the Deep Residual Shrinkage Network (DRSN). Experimental results on three types of high-risk vulnerability datasets demonstrate performance compared to state-of-the-art methods, and our method achieves an average detection accuracy of 90%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.