Abstract
Abstract The use of the finite element method for complex engineering problems is now common. To ease the burden on the engineer the development of smart or adaptive computational methods is now required to model complex problems. In this paper we investigate the development of an adaptive finite element method for fracture-related problems. The adaptive method involves various stages which include the finite element analysis, error estimation/indication, mesh refinement and fracture/failure analysis in a loop. Some simple error estimators, based on stress projection, are used to investigate the adaptive finite element process. Element refinement is based on three schemes; the first and second are a simple and hierarchical refinement scheme with transitioning which avoids the need for constraint equations between element boundaries. Another scheme based on constraint equations between elements is also examined. The energy norm is used to estimate the element error. The software has the ability to introduce a discrete fracture in the structure according to standard fracture analysis practice. Crack tip parameters are calculated using a least-squares fit of the displacements into the asymptotic crack tip displacement field. Some simple examples are used to investigate the adaptive process, its behavior and some of the practical problems encountered. The convergence and equilibrium of the adaptive process, in terms of global error in the energy norm, are investigated. In the example the same problem is analyzed using both a fine computational grid and a coarse one. The coarse mesh is then adapted using the three different procedures available. The estimated error in the solution and the stress intensity are shown against the number of elements and number of iterations. Some further areas of research in adaptive finite element analysis are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Fracture Resistance and Structural Integrity
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.