Abstract
Smart nanocarriers attract considerable interest in the filed of precision nanomedicine. Dynamic control of the interaction between nanocarriers and cells offers the feasibility that in situ activates cellular internalization at the targeting sites. Herein, we demonstrate a novel class of enzyme-responsive asymmetric polymeric vesicles self-assembled from matrix metalloproteinase (MMP)-cleavable peptide-linked triblock copolymer, poly(ethylene glycol)-GPLGVRG-b-poly(ε-caprolactone)-b-poly(3-guanidinopropyl methacrylamide) (PEG-GPLGVRG-PCL-PGPMA), in which the cell-penetrating PGPMA segments asymmetrically distribute in the outer and inner shells with fractions of 9% and 91%, respectively. Upon treatment with MMP-2 to cleave the stealthy PEG shell, the vesicles undergo morphological transformation into fused multicavity vesicles and small nanoparticles, accompanied by redistribution of PGPMA segments with 76% exposed to the outside. The vesicles after dePEGylation show significantly increased cellular internalization efficiency (∼10 times) as compared to the original ones due to the triggered availability of cell-penetrating shells. The vesicles loading hydrophobic anticancer drug paclitaxel (PTX) in the membrane exhibit significantly enhanced cytotoxicity against MMP-overexpressing HT1080 cells and multicellular spheroids. The proposed vesicular system can serve as a smart nanoplatform for in situ activating intracellular drug delivery in MMP-enriched tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.