Abstract
ABSTRACTSelf-curing, or internal curing (IC), technology has been developed to counteract self-desiccation and autogenous shrinkage of high-strength/high-performance concrete (HSC/HPC), which is considered the "Achilles’ hill" of HSC/HPC [1]. According to ACI [2], IC refers to the process by which the hydration of cement continues because of the availability of internal water that is not part of the mixing water; while the internal water is made available by the pore system in structural lightweight aggregate (LWA) that absorbs and releases water. Recently ACI defined internal curing as “supplying water throughout a freshly placed cementitious mixture using reservoirs, via pre-wetted lightweight aggregates, that readily release water as needed for hydration or to replace moisture lost through evaporation or self-desiccation” [3]. Both definitions address the use of pre-wetted LWA as a self-curing (or internal curing) agent.According to the definition of the RILEM Technical Committee TC-196 [4], IC implies introduction to the concrete mixture a component, which serves as a curing agent. This agent can be either a normal aggregate introduced into the concrete mixture in water-saturated state or a new component (for example, an additive or special aggregate). Similarly to the division accepted in external curing, RILEM TC-196 distinguishes between two categories of internal curing: (a) internal water curing (sometimes called “water entrainment”), when the curing agent performs as a water reservoir, which gradually releases water, and (b) internal sealing, when the curing agent is intended to delay/prevent loss of water from the hardening concrete. Although water-saturated porous aggregate is still the most popular material among IC agents, super-absorbent polymers (SAP), ceramic waste, recycled aggregate and wood-derived products show promising properties. In view of this, self-curing covers not only use of pre-wetted LWA, but also other methods of curing: water curing by means of variety of curing agents introduced in the concrete mix, and also the methods based on internal sealing.The recent achievements in methods and materials for self-curing are reviewed, and the future trends in development of self-curing concrete are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.