Abstract

In an effort to increase the efficiency and power density of electric vehicles and aircraft, the automobile and aerospace industries are adopting variable-speed generators as part of the powertrain. Herein, the engine directly drives a permanent magnet synchronous machine, which generates a variable-frequency/amplitude output ac-voltage. More specifically, this unique ac-voltage profile serves as the input for an ac-dc power converter that energizes the main dc-bus of the powertrain. In this paper, a smart active rectifier for hybrid/all-electric powertrains is presented. A direct model reference adaptive control (MRAC) scheme is utilized to address the rapid changes in amplitude and frequency while regulating the dc-bus voltage at unity power factor. Moreover, the MRAC requires minimal tuning due to its capability of adjusting its gains adaptively with the input voltage variations. As a result, the MRAC exhibits seamless dynamics. The performance of the MRAC is verified experimentally under accelerating and decelerating variable-frequency/amplitude input voltage ramps using a laboratory-scale 2-kW 270-V SiC-MOSFET-based power converter supplied by a programmable grid emulator. Lastly, a classic proportional-integral (PI) control scheme is implemented experimentally with the same converter as a benchmark to highlight the merits of the proposed converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.