Abstract

An algorithm is presented for generating a representation of the solvent-accessible molecular surface as a smooth triangulated manifold. The algorithm, called SMART (SMooth moleculAR surface Triangulator), divides the contact and reentrant portions of the solvent-accessible molecular surface into curvilinear three-sided elements. In contrast to the author's earlier implementation of this general approach [Zauhar, R.J. and Morgan, R.S., J. Comput. Chem., 11 (1990) 603], the SMART algorithm defines elements directly on the appropriate geometric surface types (rather than using interpolation over cubic elements), and has special features to handle highly distorted regions which often appear in deep crevices and internal cavities. While the method is designed for use with boundary element techniques in continuum electrostatics, it can also be applied to the accurate computation of molecular surface areas and volumes, and the generation of shaded surfaces for display with interactive computer graphics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.