Abstract

SMARCB1 encodes for a component of the SWI/SNF complex and is widely implicated in carcinogenesis. In the head and neck, SMARCB1-deficient carcinomas typically arise in the sinonasal tract but can be found at other sites. EZH2 inhibitors have emerged as potential targeted therapy against SWI/SNF-deficient tumors. We sought to characterize the cytomorphology of head and neck carcinomas with SMARCB1 deficiencies to identify potential candidates for targeted therapy. Head and neck carcinomas with SMARCB1 mutations were retrospectively identified and confirmed to be SMARCB1-deficient by both molecular (fluorescent in-situ hybridization or next generation sequencing) and immunohistochemical means. Cases with positive cytology were reviewed and their cytologic features cataloged. A total of 19 specimens from 13 patients were reviewed, including 8 specimens from 7 sinonasal carcinomas, 4 specimens from 3 thyroid carcinomas, 3 specimens from 2 skin carcinomas, and 4 specimens from 1 carcinoma of unknown primary origin. High-grade features were common, including mitoses (11 of 19) necrosis (13 of 19) and multinucleation (16 of 19). Tumors showed either dense cytoplasm with distinct cell borders (10 of 19) or delicate cytoplasm with indistinct cell borders (9 of 19). Most tumors showed no distinct epithelial differentiation (12 of 19), while some (7 of 19) showed glandular or signet ring features. A minor cohort demonstrated rhabdoid cells (4 of 19). Head and neck carcinomas with SMARCB1 deficiencies have a wide array of morphologies and tend to demonstrate high-grade features. Only a minor cohort demonstrate rhabdoid-type cells. Evaluation of SMARCB1 deficiency for potential targeted therapy should not be limited to tumors with rhabdoid morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call