Abstract

Soil moisture (SM) is the primary variable regulating the soil temperature (ST) differences between daytime and night-time, providing protection to crop rooting systems against sharp and sudden changes. It also has a number of practical applications in a range of disciplines. This study presents an approach to incorporating the effect of ST for the accurate estimation of SM using Earth Observation (EO) data from NASA’s SMAP sensor, one of the most sophisticated satellites currently in orbit. Linear regression analysis was carried out between the SMAP-retrieved SM and ground-measured SM. Subsequently, SMAP-derived ST was incorporated with SMAP-derived SM in multiple regression analysis to improve the SM retrieval accuracy. The ability of the proposed method to estimate SM under different seasonal conditions for the year 2016 was evaluated using ground observations from the Wales Soil Moisture Network (WSMN), located in Wales, United Kingdom, as a reference. Results showed reduced retrieval accuracy of SM between the SMAP and ground measurements. The R2 between the SMAP SM and ground-observed data from WSMN was found to be 0.247, 0.183, and 0.490 for annual, growing and non-growing seasons, respectively. The values of RMSE between SMAP SM and WSMN observed SM are reported as 0.080 m3m−3, 0.078 m3m−3 and 0.010 m3m−3, with almost zero bias values for annual, growing and non-growing seasons, respectively. Implementation of the proposed scheme resulted in a noticeable improvement in SSM prediction in both R2 (0.558, 0.440 and 0.613) and RMSE (0.045 m3m−3, 0.041 m3m−3 and 0.007 m3m−3), with almost zero bias values for annual, growing and non-growing seasons, respectively. The proposed algorithm retrieval accuracy was closely matched with the SMAP target accuracy 0.04 m3m−3. In overall, use of the new methodology was found to help reducing the SM difference between SMAP and ground-measured SM, using only satellite data. This can provide important assistance in improving cases where the SMAP product can be used in practical and research applications.

Highlights

  • Introduction conditions of the Creative CommonsSoil moisture, surface soil moisture (SSM), is a very important environmental parameter playing a key role in a number of physical processes in the Earth system, including water and carbon cycles, affecting the climate directly or indirectly [1]

  • The higher value of ET is observed during the growing season because evaporation is the process of transferring water stored in the surface of canopies, stems, branches, and soil surface to the atmosphere

  • Soil Moisture Active Passive (SMAP) SM and soil temperature (ST) product with the in situ measured Wales Soil Moisture Network (WSMN) SM and ST on a daily basis due to the ground-measured SM data having adequate length. This procedure provides the due to the ground-measured SM data having adequate length. This procedure provides matching between SMAP SM and ST values and in situ WSMN SM and ST measurements the matching between SMAP SM and ST values and in situ WSMN SM and ST measurewith sparse network for a particular day, with the assumption that those locations are ments with sparse network for a particular day, with the assumption that those locations geophysical similar in characteristics over the footprint of the sensors

Read more

Summary

Introduction

Surface soil moisture (SSM), is a very important environmental parameter playing a key role in a number of physical processes in the Earth system, including water and carbon cycles, affecting the climate directly or indirectly [1]. SSM is an important parameter in various studies, such as disaster events (drought, flood), along with agricultural productivity, water resource management, and the development of a circulation climate model at the global and regional scale. It supports decision-making policies at the national level [9,10]. About 80% of freshwater is used in irrigation by developing countries [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call