Abstract

At high energy (small x) n-point coorelators of Wilson lines appear in calculation of physical observables. The energy dependence of these observables is determined by the solution of the evolution equations these correlators satisfy. The most common correlator is the two-point function, the imaginary part of the forward scattering amplitude of a quark anti-quark dipole scattering on a target. This appears in structure functions in DIS as well as single inclusive hadron production in proton-nucleus collisions. Higher point correlators of Wilson lines appear in less inclusive processes, such as two-hadron angular and rapidity correlations and satisfy the Balitski-JIMWLK evolution equation. Here we derive the evolution equation satisfied by the six point correlator of Wilson lines which appears in di-hadron angular correlations in proton-nucleus collisions at high energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call