Abstract

Complex networks have been a prominent topic of research for several years, spanning a wide range of fields from mathematics to computer science and also to social and biological sciences. The eigenvalues of the Seidel matrix, Seidel Signless Laplacian matrix, Seidel energy, Seidel Signless Laplacian energy, Maximum and Minimum energy, Degree Sum energy and Distance Degree energy of the Unitary Cayley graphs [UCG] have been calculated. Low-power devices must be able to transfer data across long distances with low delay and reliability. To overcome this drawback a small-world network depending on the unitary Cayley graph is proposed to decrease the delay and increase the reliability and is also used to create and analyze network communication. Small-world networks based on the Cayley graph have a basic construction and are highly adaptable. The simulation result shows that the small-world network based on unitary Cayley graphs has a shorter delay and is more reliable. Furthermore, the maximum delay is lowered by 40%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call