Abstract

In this paper, the flexible neural tree (FNT) model is employed to predict the small-time scale traffic measurements data. Based on the pre-defined instruction/operator sets, the FNT model can be created and evolved. This framework allows input variables selection, over-layer connections and different activation functions for the various nodes involved. The FNT structure is developed using the Genetic Programming (GP) and the parameters are optimized by the Particle Swarm Optimization algorithm (PSO). The experimental results indicate that the proposed method is efficient for forecasting small-time scale traffic measurements and can reproduce the statistical features of real traffic measurements. We also compare the performance of the FNT model with the feed-forward neural network optimized by PSO for the same problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.