Abstract

Wind energy is ubiquitous in both outdoor and indoor environments, yet small-scale energy harvesting aimed to harness power from wind with low speed (<10m/s) has received only limited attention. This thesis focuses on small-scale wind energy harvesting using smart structures with piezoelectric materials. An extensive literature survey on the state-of-the-art techniques of small scale wind energy harvesting is provided. The first documented comparative study of different tip cross-sections for small-scale wind energy harvesting based on galloping is presented, followed by a comparison study on analytical models. A two degree-of-freedom galloping piezoelectric energy harvester (GPEH) is proposed which successfully enhances the output power in low wind speeds. A beam stiffener is employed as an electromechanical coupling magnifier, which is proved to be an easy but greatly effective efficiency enhancing method for energy harvesting from VIV, flutter as well as galloping. In the aspect of interface circuit, performances of synchronized charge extraction as well as synchronized switching harvesting on inductor interfaces in GPEHs are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.