Abstract

Gravity waves (GWs) are a ubiquitious dynamical feature of the polar summer mesopause region. During three summer campaigns, in 1991, 1993 and 1994, we launched seven sounding rockets from the north Norwegian island Andøya. Each of these payloads carried an ionization gauge capable of measuring the total atmospheric density at a high spatial resolution. From these measurements, temperature profiles were determined for altitudes between 70 and 110 km, with an altitude resolution of 200 m. The temperature profiles reveal significant rms variations that are as large as 6 K at 80 km, 10 K at 85 km, and even 20 K at 95 km. During three out of the seven launches a bright noctilucent cloud (NLC) was simultaneously detected by our ground‐based lidar and by rocket‐borne in situ experiments. During these flights, the NLC is located close to a local temperature minimum below the mesopause. We then estimated gravity wave parameters from accompanying falling sphere and chaff wind observations and found signatures that the wave periods during the NLC cases were on the order of 7–9 hours, with corresponding horizontal wavelengths of 600–1000 km. Motivated by these observations, we used a microphysical model of NLC generation and growth to study the interaction between GWs and NLC. Based on recently measured and modeled temperatures and water vapor mixing ratios, and our gravity wave parameter estimates, we find that the NLC layer indeed follows the motion of the cold phase of the wave by means of a complex interplay between ice crystal sedimentation, transport by the vertical wind, and simultaneous growth. It turns out that the history of individual particles significantly influences the observed properties of NLC. Furthermore, we find that GWs with periods longer than 6.5 hours amplify NLC while waves with shorter periods tend to destroy NLC. In addition, we can only find a correlation between local temperature minima and the location of the NLC provided that the wave periods are longer than ∼6 hours, which is consistent with our wave parameter estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.