Abstract

Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high-order accurate eno scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. In contrast to the findings of Pumir and Siggia who reported finite time collapse of the bubble cap, the present numerical results suggest that the strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. Consequently, the thickness of the bubble decreases exponentially. On the other hand, the bubble experiences much stronger straining and intensification of gradients at its side. As the bubble rises, a secondary front also forms from its tail. Together with the primary front, they constitute a pair of tightly bound plus and minus double vortex sheet structure which is highly unstable and vulnerable to viscous dissipation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.