Abstract

A critical issue in pedestrian detection is to detect small-scale objects that will introduce feeble contrast and motion blur in images and videos, which in our opinion should partially resort to deep-rooted annotation bias. Motivated by this, we propose a novel method integrated with somatic topological line localization (TLL) and temporal feature aggregation for detecting multi-scale pedestrians, which works particularly well with small-scale pedestrians that are relatively far from the camera. Moreover, a post-processing scheme based on Markov Random Field (MRF) is introduced to eliminate ambiguities in occlusion cases. Applying with these methodologies comprehensively, we achieve best detection performance on Caltech benchmark and improve performance of small-scale objects significantly (miss rate decreases from 74.53% to 60.79%). Beyond this, we also achieve competitive performance on CityPersons dataset and show the existence of annotation bias in KITTI dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.