Abstract

Habitat fragmentation is one of the most important threats to biodiversity. Decreasing patch size may lead to a reduction in the size of populations and to an increased extinction risk of remnant populations. Furthermore, colonization rates may be reduced in isolated patches. To investigate the effects of isolation and patch size on extinction and colonization rates of plant species, calcareous grasslands at three sites in the Swiss Jura Mountains were experimentally fragmented into patches of 0.25, 2.25, and 20.25 m2 by frequent mowing of the surrounding area from 1993 to 1999. Species richness in the fragment plots and adjacent control plots of the same sizes was recorded during these 7 years. In agreement with the theory of island biogeography, colonization rate was reduced by 30% in fragments versus non-isolated controls, and extinction increased in small versus large plots. Habitat specialists, in contrast to generalists, were less likely to invade fragments. In the last 4 years of the experiment, extinction rates tended to be higher in fragment than in control plots at two of the three sites. Despite reduced colonization rates and a tendency of increased extinction rates in fragments, fragmented plots had only marginally fewer species than control plots after 7 years. Hence, rates were a more sensitive measure for community change than changes in species richness per se. From a conservation point of view, the detected reduced colonization rates are particularly problematic in small fragments, which are more likely to suffer from high extinction rates in the long run.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call