Abstract
Hydraulic pumps are the core components that provide power for hydraulic transmission systems, which are widely used in aerospace, marine engineering, and mechanical engineering, and their failure affects the normal operation of the entire system. This paper takes a single axial piston pump as the research object and proposes a small-sample fault diagnosis method based on the model migration strategy for the situation in which only a small number of training samples are available for axial piston pump fault diagnosis. To achieve end-to-end fault diagnosis, a 1D Squeeze-and-Excitation Networks (1D-SENets) model was constructed based on a one-dimensional convolutional neural network and combined with the channel domain attention mechanism. The model was first pre-trained with sufficient labeled fault data from the source conditions, and then, based on the model migration strategy, some of the underlying network parameters were fixed, and a small amount of labeled fault data from the target conditions was used to fine-tune the rest of the parameters of the pre-trained model. In this paper, the proposed method was validated using an axial piston pump fault dataset, and the experimental results show that the method can effectively improve the overfitting problem in the small sample fault diagnosis of axial piston pumps and improve the recognition accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.