Abstract

The study of frustrated spin systems often requires time-consuming numerical simulations. As the simplest approach, the classical Ising model is often used to investigate the thermodynamic behavior of such systems. Exploiting the small correlation lengths in frustrated Ising systems, we develop a method for obtaining first approximations to the energetic properties of frustrated two-dimensional Ising systems using small networks of less than 30 spins. These small networks allow much faster numerical simulations, and more importantly, analytical evaluations of their properties are numerically tractable. We choose Ising systems on the triangular lattice, the kagome lattice, and the triangular kagome lattice as prototype systems and find small systems that can serve as good approximations to these prototype systems. Through comparisons between the properties of extended models and small systems, we develop a set of criteria for constructing small networks to approximate general infinite two-dimensional frustrated Ising systems. This method of using small networks provides a different and efficient way to obtain a first approximation to the properties of frustrated spin systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.