Abstract

Prostate cancer is the second leading cause of cancer death in the United States and, thus far, there has been no effective therapy for the treatment of hormone-refractory disease. Recently, the androgen receptor (AR) has been shown to play a critical role in the development and progression of the disease. In this report, we showed that knocking down the AR protein level by a small interfering RNA (siRNA) approach resulted in a significant apoptotic cell death as evidenced by an increased annexin V binding, reduced mitochondrial potential, caspase-3/6 activation, and DFF45 and poly(ADP-ribose) polymerase cleavage. The apoptotic response was specifically observed in those siRNA-transfected cells that harbor a native AR gene. No cell death was found in the AR-null prostate cancer cell PC-3 or its subline that has been reconstituted with an exogenous AR gene, as well as two breast cancer cell lines that are AR positive. Moreover, in parallel with the siRNA-induced AR silencing, the antiapoptotic protein Bcl-xL was significantly reduced, which might account for the apoptotic cell death because ectopic enforced expression of Bcl-xL protein partially inhibited apoptosis after AR silencing. Taken together, our data showed that knocking down the AR protein level in prostate cancer cells leads to apoptosis by disrupting the Bcl-xL-mediated survival signal downstream of AR-dependent survival pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.