Abstract

To investigate the feasibility of intrastromal lenticule insertion to restore corneal shape in a model of ectatic human cornea. For this experimental ex vivo study on 34 human corneas unsuitable for transplantation, 17 corneas were thinned by decentralized posterior excimer laser ablation to 200μm thickness and 6.5mm diameter and then inflated up to 100mm Hg to expose the ectasias (recipient corneas). Pachimetry and topography were obtained. Stromal lenticules of the same diameter and thickness as the ectasias were shaped with a femtosecond laser from the remaining 17 donor corneas. An intrastromal pocket was created with femtosecond laser within the ectatic recipient corneas and the donor lenticule was inserted inside it. Changes in corneal architecture and profile were evaluated by means of corneal topography and anterior segment optical coherence tomography. All stromal lenticules were successfully implanted. Tomography confirmed regularity of the lenticule profile within the stromal pocket. Corneal thickness was significantly increased after the procedure (P < 0.0001). Maximal posterior elevation from the best-fitted toric ellipsoid was significantly reduced (P < 0.0001). Significant flattening of posterior K1 and K2 was also obtained (P = 0.041 and P = 0.004, respectively). Anterior and posterior astigmatism, anterior and posterior asphericity, and spherical aberration did not differ significantly after the procedure. Femtosecond laser-assisted stromal lenticule addition is feasible for restoring corneal thickness to an ectatic area and for regularizing posterior corneal elevation. The technique opens new perspectives for the treatment of corneal ectasias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.