Abstract
While the downscaling of size for field effect transistors is highly desirable for computation efficiency, quantum tunneling at the Si/SiO_{2} interface becomes the leading concern when approaching the nanometer scale. By developing a machine-learning-based global search method, we now reveal all the likely Si/SiO_{2} interface structures from thousands of candidates. Two high Miller index Si(210) and (211) interfaces, being only ∼1 nm in periodicity, are found to possess good carrier mobility, low carrier trapping, and low interfacial energy. The results provide the basis for fabricating stepped Si surfaces for next-generation transistors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.