Abstract

Model-based reinforcement learning algorithms try to learn an agent by training a model that simulates the environment. However, the size of such models tends to be quite large which could be a burden as well. In this paper, we address the question, how we could design a model with fewer parameters than previous model-based approaches while achieving the same performance in the 100 K-interactions regime. For this purpose, we create a world model that combines a vector quantized-variational autoencoder to encode observations and a convolutional long short-term memory to model the dynamics. This is connected to a model-free proximal policy optimization agent to train purely on simulated experience from this world model. Detailed experiments on the Atari environments show that it is possible to reach comparable performance to the SimPLe method with a significantly smaller world model. A series of ablation studies justify our design choices and give additional insights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.