Abstract

The amygdala plays an important functional role in fear and anxiety. Abnormalities in the amygdala are believed to be involved in the neurobiological basis of panic disorder (PD). Previous structural neuroimaging studies have found global volumetric and morphological abnormalities in the amygdala in patients with PD. Very few studies, however, have explored for structural abnormalities in various amygdala sub-regions, which consist of various sub-nuclei, each with different functions. This study aimed to evaluate for volumetric abnormalities in the amygdala sub-nuclei, in order to provide a better understanding neurobiological basis of PD. Thirty-eight patients with PD and 38 matched healthy control (HC) participants underwent structural MRI scanning. The volume of the whole amygdala, as well as its consistent sub-nuclei, were calculated using FreeSurfer software. Relative volumes of these amygdala sub-regions were compared between the two groups. Results showed significantly smaller volumes in the right lateral and basal nuclei in the patients with PD compared with the HC. Lateral and basal nuclei are thought to play crucial role for processing sensory information related with anxiety and fear. Our results suggest that these particular amygdala sub-regions play a role in the development of PD symptoms.

Highlights

  • Panic disorder (PD) is an anxiety disorder characterized by recurrent panic attacks

  • The patients with panic disorder (PD) showed a significantly smaller volume in the right whole amygdala compared with the healthy control (HC)

  • In the sub-nuclei analysis, significant smaller volumes in the right lateral nucleus and the basal nucleus were demonstrated in the PD patients compared to the HC (Table 1)

Read more

Summary

Introduction

Panic disorder (PD) is an anxiety disorder characterized by recurrent panic attacks. It has a lifetime prevalence of about 3%, and typically shows a chronic course. PD has been associated with both decreased social functioning and lower quality of life, both of which have been closely associated with symptom severity [1, 2]. Elucidating the neurobiological basis of PD is an important endeavor as it could provide a target for the development of more effective treatments. Recent neuroimaging studies have provided evidence that patients with PD show functional and structural abnormalities in limbic regions, frontal regions, and brainstem regions (see reviews of [3] and [4]).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call