Abstract

Age-induced decline in the ability to perform daily activities is associated with a deterioration of physical parameters. Changes occur in neuromuscular system with age; however, the relationship between these changes and physical parameters has not been fully elucidated. Therefore, in this study, we aimed to determine the relationship between neuromuscular system evaluated using a coherence analysis of the leg muscles and physical parameters in community-dwelling healthy elderly adults. The participants were required to stand still in bipedal and unipedal stances on a force plate. Then, electromyography (EMG) was recorded from the tibialis anterior (TA) and medial and lateral gastrocnemius (MG/LG) muscles, and intermuscular coherence was calculated between the following pairs: TA and MG (TA-MG), TA and LG (TA-LG), and MG and LG (MG-LG). Furthermore, gait speed, unipedal stance time, and muscle mass were measured. EMG-EMG coherence for the MG-LG pair was significantly greater in the unipedal stance task than in the bipedal one (p=.001). Multiple linear regression analysis revealed that the muscle mass of the leg was negatively correlated with the change in the β-band coherence for the MG-LG pair from bipedal to unipedal stance (R2=0.067, standard β=-0.345, p=.044). As the β-band coherence could reflect the corticospinal activity, the increased β-band coherence may be a compensation for the smaller muscle mass, or alternatively may be a sign of changes in the nervous system resulting in the loss of muscle mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call