Abstract

Malate synthase undergoes an X-ray induced aggregation which can be monitored in situ by small-angle X-ray scattering; the analysis of scattering curves, taken at subsequent stages of aggregation, has led to the establishment of a tentative model for an aggregation in two dimensions (Zipper and Durchschlag (1980) Rad. and Environm. Biophys., in press). This model was checked by comparison of appropriate theoretical curves with the experimental curves. The theoretical scattering curves for this comparison were obtained by weighted averaging over the scattering curves calculated for various species of hypothetical aggregates. Based on the approximation of the unaggregated enzyme particle by an oblate cylinder, the aggregates were assumed to be composed of 2, 3, 4 or 6 of such cylinders, associated side-by-side in one and later on in two linear rows. THe weight fractions of the species were chosen so, that an optimum fit of the experimental mean radii of gyration and mean degrees of aggregation was achieved. The distance distribution functions calculated for the model are very similar to the functions derived from the scattering experiment. Cross-section Guinier plots of the scattering curves of the model reveal the occurrence of one and later on of two pseudo cross-section factors similar to those observed in the experimental scattering curves. The pseudo thickness factor of the model of the unaggregated particle is found to be retained in the model curves for all stages of aggregation. From these results it can be concluded that the model for the aggregation process is essentially consistent with the scattering behaviour of the aggregating enzyme. Small differences between the theoretical and experimental curves may be explained by the idealizations of the model. The comparison of theoretical curves for alternative models, assuming aggregation in three dimensions, suggests that these models are unlikely, though small amounts of three-dimensional aggregates cannot be ruled out completely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.