Abstract
We compare convergence rates of Metropolis–Hastings chains to multi-modal target distributions when the proposal distributions can be of “local” and “small world” type. In particular, we show that by adding occasional long-range jumps to a given local proposal distribution, one can turn a chain that is “slowly mixing” (in the complexity of the problem) into a chain that is “rapidly mixing.” To do this, we obtain spectral gap estimates via a new state decomposition theorem and apply an isoperimetric inequality for log-concave probability measures. We discuss potential applicability of our result to Metropolis-coupled Markov chain Monte Carlo schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.