Abstract

We study the small-time global approximate controllability for incompressible magnetohydrodynamic (MHD) flows in smoothly bounded two- or three-dimensional domains. The controls act on arbitrary nonempty open portions of each connected boundary component, while linearly coupled Navier slip-with-friction conditions are imposed along the uncontrolled parts of the boundary. Some choices for the friction coefficients give rise to interacting velocity and magnetic field boundary layers. We obtain sufficient dissipation properties of these layers by a detailed analysis of the corresponding asymptotic expansions. For certain friction coefficients, or if the obtained controls are not compatible with the induction equation, an additional pressure-like term appears. We show that such a term does not exist for problems defined in planar simply-connected domains and various choices of Navier slip-with-friction boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.