Abstract

Sperm competition will be the inevitable consequence of polyandrous mating behavior if two or more males inseminate a single female. It has been demonstrated for a wide variety of animals that males adapt to this situation behaviorally, physiologically and morphologically, e.g. by evolving relatively large testes size to produce more sperm. All pair-living primates investigated so far were found to have relatively small testes, suggesting a monandrous mating system. We investigated the relationship between extra-pair paternity (EPP) rate as a measure of sperm competition intensity and relative testes size in a pair-living primate, the fork-marked lemur (Phaner furcifer). Paternity exclusion analyses for seven offspring using six polymorphic DNA-microsatellite markers suggested a high EPP rate. Female nocturnal travel distances were longer during the mating season, suggesting that females take an active role in achieving extra-pair copulations (EPCs). Surprisingly, fork-marked lemur testes size was relatively small compared to 23 other lemuroid primates, a result that is in contrast to predictions of sperm competition theory. Neither possible behavioral and morphological adaptations to an alternative paternity guard (i.e. mate guarding), nor sampling biases, phylogenetic constraints, and population density effects explain the absence of large testes in a species with high EPP, a phenomenon also known from birds with moderate to low EPP rates. We conclude that more data are needed on the frequency of EPCs, the timing of in-pair and extra-pair copulations, as well as the role of female choice, to explain why males of some species apparently do not adapt to sperm competition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call