Abstract

Detecting small targets in large fields of view is a challenging task. Nowadays, many targets detection models based on the convolutional neural network (CNN) achieve excellent performance. However, these CNN-based detectors are inefficient when applied to tasks of real-time detection of small targets. This paper proposes a small-target detection model in large fields of view based on the tectofugal–thalamofugal–accessory optic system of birds. Within this model, first, we design an unsupervised saliency algorithm to generate saliency regions to suppress background information according to the visual information processing mechanism of the tectofugal pathway of birds. Second, we design a super-resolution (SR) analysis method to enlarge small targets and improve image resolution by the information processing mechanism of the accessory optic system of birds. Then, according to the information processing mechanism of the thalamofugal pathway, we propose a CNN-based method to detect small targets. We further test our model on two public datasets (the VEDAI dataset and DLR 3 K dataset), and the experimental results demonstrate that the proposed detection model outperforms the state-of-the-art methods on small-target detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call