Abstract

At present, UAV aerial photography has a good prospect in agricultural production, disaster response, and other aspects. The application of UAVs can greatly improve work efficiency and decision-making accuracy. However, owing to inherent features such as a wide field of view and large differences in the target scale in UAV aerial photography images, this can lead to existing target detection algorithms missing small targets or causing incorrect detections. To solve these problems, this paper proposes a small target detection algorithm for UAV aerial photography based on improved YOLOv5s. Firstly, a small target detection layer is applied in the algorithm to improve the detection performance of small targets in aerial images. Secondly, the enhanced weighted bidirectional characteristic pyramid Mul-BiFPN is adopted to replace the PANet network to improve the speed and accuracy of target detection. Then, CIoU was replaced by Focal EIoU to accelerate network convergence and improve regression accuracy. Finally, a non-parametric attention mechanism called the M-SimAM module is added to enhance the feature extraction capability. The proposed algorithm was evaluated on the VisDrone-2019 dataset. Compared with the YOLOV5s, the algorithm improved by 7.30%, 4.60%, 5.60%, and 6.10%, respectively, in mAP@50, mAP@0.5:0.95, the accuracy rate (P), and the recall rate (R). The experiments show that the proposed algorithm has greatly improved performance on small targets compared to YOLOv5s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call