Abstract
Rivers and streams represent <0.6% of the Earth's land surface but play a disproportionately large role in global biogeochemical cycles and provide locally relevant ecosystem services. However, knowledge of how rivers influence material budgets and ecosystem services has major gaps due to the lack of explicit consideration of tidally-influenced reaches. Focusing on the conterminous US, we provide a foundation for understanding the role of tidal streams. We find that 66% of tidal stream length is contributed from low order streams (< 4th order), and that terrestrial ecosystem production in low-lying coastal zones is 30% greater than in adjacent terrestrial ecosystems. This prevalence of small streams indicates that small coastal watersheds dominate tidally influenced spatial domains. Furthermore, we find that relative sea-level rise (RSLR) will have a disproportionate impact on low order tidal streams and their terrestrial interfaces - 1 m RSLR will decrease the tidal stream land-water interface by 17% and the total surface area of US tidal streams by 31%. Upstream reaches of tidal zones will be extended in response to RSLR, but gains will be more than offset by coastal losses because topographic gradients become steeper moving inland, and accretion rates may not keep pace with RSLR. These results highlight previously unrecognized dominance, high productivity, and disproportionate future loss of low-order coastal ecosystems. This indicates a critical need to focus research on small tidal stream systems under contemporary and future conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.