Abstract

This study examines the small-strain dynamic properties of mixtures composed of sandy and gravelly soils with granulated tire rubber in terms of shear modulus (GO), and damping ratio in shear (Dmin). Torsional resonant column tests are performed on dry, dense specimens of soil-rubber mixtures in a range of soil to rubber particles size 5:1–1:10 and rubber content from 0 to 35% by mixture weight. The experimental results indicate that the response of the mixtures is significantly affected by the content of rubber and the relative size of rubber to soil particles. Concering the small-strain shear modulus, an equivalent void ratio is introduced that considers the volume of rubber particles as part of the total volume of voids. Based on a comprehensive set of test results a series of equations were developed that can be used to evaluate the shear modulus and damping ratio at small shear strain levels if the confining pressure, the content of rubber by mixture weight, the grain size of soil and rubber particles, and the dynamic and physical properties of the intact soil are known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.