Abstract
A position dependent random map is a dynamical system consisting of a collection of maps such that, at each iteration, a selection of a map is made randomly by means of probabilities which are functions of position. Let f* be an invariant density of the position dependent random map T. We consider a model of small random perturbations 𝔗ϵ of the random map T. For each ϵ > 0, 𝔗ϵ has an invariant density function f ϵ. We prove that f ϵ → f* as ϵ → 0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.