Abstract

This article introduces the design and analysis of a small-size coaxial resonant applicator for high-speed microwave heating-assisted additive manufacturing of multiple materials, such as continuous carbon fiber reinforced polymer composites, thermoplastic, and metal parts. The elaborated coaxial resonant applicator reduces the size and has a resonant frequency between 2.4 and 2.5 GHz. A TEM wave is stimulated in the applicator where the electrical field is polarized perpendicular to the filaments and, therefore, allows a maximum penetration depth. The electrical conductive filament is designed as a part of the inner conductor to enhance coupling efficiency. To prevent microwave leakage induced by the conductive material, a compact quarter wavelength filter was developed. The equivalent circuit of the filter was used to analyze the influence of structural parameters on the resonance frequency. The filter has been tested and good agreement between measured and simulated results is obtained. The heating behavior with varying input power has been investigated for polyamide, polylactic acid, and continuous carbon fiber reinforced polyamide filaments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call