Abstract
Silicon based pressure sensors have been used to measure turbulent wall-pressure fluctuations in a two-dimensional flat plate boundary layer, Reθ = 5072. The side lengths of the diaphragms were 100 μm (d+ = 7.2) and 300 μm (d+ = 21.6), giving a ratio of the boundary layer thickness to the diaphragm side length of the order of 240 and a resolution of eddies with wave numbers less than ten viscous units. Power spectra were measured for the frequency range 13 Hz < f < 13 kHz. Scaled in outer and inner variables a clear overlap region between the mid and high frequency parts of the spectrum is shown. In this overlap region the slope was found to be ω−1, while in the high frequency part it was ω−5. Correlation measurements in both the longitudinal and transversal directions were performed and compared to other investigations. Longitudinal space time correlations, including the high frequency range, indicated an advection velocity of the order of half the freestream velocity. A broad band filtering of the longitudinal correlation showed that the high frequency part of the spectrum is associated with the smaller eddies from the inner part of the boundary layer, resulting in a reduction of the correlation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.