Abstract

Amorphous silica nanoparticles are widely used as pharmaceutical excipients and food additive (E551). Despite the potential human health risks of mineral nanoparticles, very few data regarding their oral toxicity are currently available. This study aims to evaluate and to understand the interactions of silica particles at 1 and 10mgmL-1 with the intestinal barrier using a Caco-2 monolayer and a Caco-2/HT29-MTX co-culture. A size- and concentration-dependent reversible increase of the paracellular permeability is identified after a short-term exposure to silica nanoparticles. Nanoparticles of 30nm induce the highest transepithelial electrical resistance drop whereas no effect is observed with 200nm particles. Additive E551 affect the Caco-2 monolayer permeability. Mucus layer reduces the permeability modulation by limiting the cellular uptake of silica. After nanoparticle exposure, tight junction expression including Zonula occludens 1 (ZO-1) and Claudin 2 is not affected, whereas the actin cytoskeleton disruption of enterocytes and the widening of ZO-1 staining bands are observed. A complete permeability recovery is concomitant with the de novo filament actin assembly and the reduction of ZO-1 bands. These findings suggest the paracellular modulation by small silica particles is directly correlated to the alteration of the ZO-actin binding strongly involved in the stability of the tight junction network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.