Abstract

Considering the difficulty of receiving small signals under strong electromagnetic jamming, this paper proposes a small-signal anti-jamming scheme based on a single dynamic metamaterial antenna (DMA). Our scheme uses the dynamic-adjustable characteristics of the DMA to perform spatial filtering at the antenna radio frequency (RF) front-end, to suppress strong jamming signals in advance and to improve the receiver’s ability to receive and demodulate small signals. Specifically, we take the maximization of signal-to-interference-plus-noise ratio (SINR) as the optimization goal, transform the fractional non-convex objective function model into a quasi-convex semi-definite relaxation (SDR) problem, and use the Charnes-Cooper (CC) transform algorithm to find the optimal DMA array-element codeword-state matrix. Simulation results show that DMA has better spatial-beamforming capability than traditional antenna arrays, and the proposed scheme can better resist strong jamming. DMA realizes the effect of digital beamforming at the back end of the traditional communication system, has the advantages of traditional digital-spatial filtering, and further improves the receiver’s ability to receive and demodulate small signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call