Abstract

AbstractGiven any dimension function h, we construct a perfect set E ⊆ ${\mathbb{R}}$ of zero h-Hausdorff measure, that contains any finite polynomial pattern.This is achieved as a special case of a more general construction in which we have a family of functions $\mathcal{F}$ that satisfy certain conditions and we construct a perfect set E in ${\mathbb{R}}^N$, of h-Hausdorff measure zero, such that for any finite set {f1,. . .,fn} ⊆ $\mathcal{F}$, E satisfies that $\bigcap_{i=1}^n f^{-1}_i(E)\neq\emptyset$.We also obtain an analogous result for the images of functions. Additionally we prove some related results for countable (not necessarily finite) intersections, obtaining, instead of a perfect set, an $\mathcal{F}_{\sigma}$ set without isolated points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.