Abstract

Diffuse correlation spectroscopy (DCS) has shown promise as a means to non-invasively measure cerebral blood flow in small animal models. Here, we characterize the validity of DCS at small source-detector reflectance separations needed for small animal measurements. Through Monte Carlo simulations and liquid phantom experiments, we show that DCS error increases as separation decreases, although error remains below 12% for separations > 0.2 cm. In mice, DCS measures of cerebral blood flow have excellent intra-user repeatability and strongly correlate with MRI measures of blood flow (R = 0.74, p<0.01). These results are generalizable to other DCS applications wherein short-separation reflectance geometries are desired.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.