Abstract
The space-time cross-correlation function C(T)(r,τ) of local temperature fluctuations in turbulent Rayleigh-Bénard convection is obtained from simultaneous two-point time series measurements. The obtained C(T)(r,τ) is found to have the scaling form C(T)(r(E),0) with r(E)=[(r-Uτ)(2)+V(2)τ(2)](1/2), where U and V are two characteristic velocities associated with the mean and rms velocities of the flow. The experiment verifies the theory and demonstrates its applications to a class of turbulent flows in which the requirement of Taylor's frozen flow hypothesis is not met.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.