Abstract
Measurements have been made in nominally two-dimensional turbulent wakes generated by five different bluff bodies. Each wake has a different level of large-scale organization which is reflected in different amounts of large-scale anisotropy. Structure functions of streamwise (u) and lateral (v) velocity fluctuations at approximately the same value of Rλ, the Taylor microscale Reynolds number, indicate that inertial-range scales are significantly affected by the large-scale anisotropy. The effect is greater on v than u and more pronounced for the porous-body wakes than the solid-body wakes. In particular, ‘relative’ values of the scaling (or power-law) exponents indicate that the magnitude of the transverse exponents can exceed that of the longitudinal ones in the porous-body wakes. This is supported by the inertial-range behaviour of the spectra of u and v. The difference between the transverse and longitudinal exponents appears to depend on the large-scale anisotropy of the flow, as measured by the ratio of the variances of v and u and ratio of the integral length scales of v and u. The spanwise vorticity spectra are much less affected by the anisotropy than the spectra of u and v.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.