Abstract

Reliable assessment of the impact of Siberian boreal forest wildfires on the environment and climate necessitates an improved understanding of microphysical and chemical properties of emitted aerosols. Smoldering, flaming and mixed fires of typical Siberian biomass (pine and debris) were simulated during a small-scale study in a Large Aerosol Chamber (LAC). Individual particle analysis of PM_(10) and PM_(2.5) smoke morphology and elemental composition revealed a strong dependence on combustion temperature, i.e., a dominant abundance of soot agglomerates versus roughly spherical organic particles in the flaming and smoldering phase, respectively. Cluster analysis of smoke microstructure was used to apportion the emitted particles into major characteristic groups: Soot and Organic, which accounted for around 90% and 60% of total particle numbers emitted from the flaming and smoldering fires, respectively. Carbon fractions and inorganic ion analysis supported the identification of particle types representative of combustion phase and biomass type. Elemental carbon (EC) particles from flaming fires comprised approximately 25% of Group Soot, in good agreement with a high EC fraction in total carbon of around 65% and low organic carbon (OC)/EC ratio near 0.5. Smoldering fires of pine and debris produced exclusively organic particles with high OC/EC ratios of 194 and 34, respectively. Small quantities of elemental constituents in biomass were vaporized during combustion and produced internally/externally mixed fly ash in Group Ca-, Si-, and Fe-rich of significantly less abundance. Ca, Cl, S, and Mg were more frequently distributed elements in pine than debris smoke. Sulfates and nitrates produced from gas-to-particle reactions formed Group S- and N-rich. During time evolution of smoke volatile inorganic compounds were condensed as potassium chlorides and sulfates into a newly formed Group K,Cl-rich. Quantification of Siberian biomass smoke microstructure by chemical micromarkers enables aerosols to be classified with respect to a source type assigned to Siberian wildfires.

Highlights

  • Biomass burning and fossil fuel combustion produce large amounts of smoke in the atmosphere on global scale, affecting air quality, the earth’s radiation budget, visibility, and aerosol/cloud/climate interactions (Ito and Penner, 2005)

  • Individual particle analysis of PM10 and PM2.5 smoke morphology and elemental composition revealed a strong dependence on combustion temperature, i.e., a dominant abundance of soot agglomerates versus roughly spherical organic particles in the flaming and smoldering phase, respectively

  • Morphology and Elemental Composition The scanning electron microscopy (SEM) panorama of pine wood smoke sampled in the flaming phase shows an impaction spot of concentricallyoriented particles (Fig. 1(a))

Read more

Summary

Introduction

Biomass burning and fossil fuel combustion produce large amounts of smoke in the atmosphere on global scale, affecting air quality, the earth’s radiation budget, visibility, and aerosol/cloud/climate interactions (Ito and Penner, 2005). Smoldering, flaming and mixed fires of typical Siberian biomass (pine and debris) were simulated during a small-scale study in a Large Aerosol Chamber (LAC). Individual particle analysis of PM10 and PM2.5 smoke morphology and elemental composition revealed a strong dependence on combustion temperature, i.e., a dominant abundance of soot agglomerates versus roughly spherical organic particles in the flaming and smoldering phase, respectively.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call