Abstract
While the introduction of poly-(ADP)-ribose polymerase (PARP) inhibitors in homologous recombination DNA repair (HR) deficient high grade serous ovarian, fallopian tube and primary peritoneal cancers (HGSC) has improved patient survival, resistance to PARP inhibitors frequently occurs. Preclinical and translational studies have identified multiple mechanisms of resistance; here we examined tumour samples collected from 26 women following treatment with PARP inhibitors as part of standard of care or their enrolment in clinical trials. Twenty-one had a germline or somatic BRCA1/2 mutation. We performed targeted sequencing of 63 genes involved in DNA repair processes or implicated in ovarian cancer resistance. We found that just three individuals had a small-scale mutation as a definitive resistance mechanism detected, having reversion mutations, while six had potential mechanisms of resistance detected, with alterations related to BRCA1 function and mutations in SHLD2. This study indicates that mutations in genes related to DNA repair are detected in a minority of HGSC patients as genetic mechanisms of resistance. Future research into resistance in HGSC should focus on copy number, transcriptional and epigenetic aberrations, and the contribution of the tumour microenvironment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.