Abstract

CCS technology involves carbon capture, where the captured CO2 contains N2 impurities and there is a risk of Boiling Liquid Expanding Vapor Explosion (BLEVE) in the high-pressure CO2-N2 mixtures vessel. Therefore, in this paper, we experimentally investigated the jet structure and boiling nucleation microevolution process after the sudden release of high-pressure CO2-N2 mixtures in a pressure vessel and discussed the effects of rupture disc diameter, and N2 molar ratio on the dynamic pressure before the startup of BLEVE. The results show that under-expanded jets are experimentally observed due to the Joule-Thompson effect. The boiling and nucleation microevolution is divided into six main stages, in the second of which the boiling expansion of the liquid and the "backfilling" of the gas leads to a dynamic pressure peak greater than the initial pressure, and BLEVE starts to occur. In the experiments, the dynamic pressure peaks were larger at 8 mm rupture disc diameter and 8 mol% N2, BLEVE did not occur at 15 mm, and N2 content below 5 mol% had less effect on the dynamic pressure behavior. This study provides a preliminary investigation of the pre-BLEVE behavior of CO2-N2 mixtures and provides theoretical support for risk prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.