Abstract

The transition to turbulence in plane Couette flow and several other shear flows is connected with saddle node bifurcations in which fully three-dimensional, nonlinear solutions to the Navier–Stokes equation, so-called exact coherent states (ECS), appear. As the Reynolds number increases, the states undergo secondary bifurcations and their time-evolution becomes increasingly more complex. Their spatial complexity, in contrast, remains limited so that these states cannot contribute to the spatial complexity and cascade to smaller scales expected for higher Reynolds numbers. We here present families of scaling ECS that exist on ever smaller scales as the Reynolds number is increased. We focus in particular on two such families for plane Couette flow, one centered near the midplane and the other close to a wall. We discuss their scaling and localization properties and the bifurcation diagrams. All solutions are localized in the wall–normal direction. In the spanwise and downstream direction, they are either periodic or localized as well. The family of scaling ECS localized near a wall is reminiscent of attached eddies, and indicates how self-similar ECS can contribute to the formation of boundary layer profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.