Abstract

Abstract Magnetic fields grow quickly even at early cosmological times, suggesting the action of a small-scale dynamo (SSD) in the interstellar medium of galaxies. Many studies have focused on idealized turbulent driving of the SSD. Here we simulate more realistic supernova-driven turbulence to determine whether it can drive an SSD. Magnetic field growth occurring in our models appears inconsistent with simple tangling of magnetic fields, but consistent with SSD action, reproducing and confirming models by Balsara et al. that did not include physical resistivity η. We vary η, as well as the numerical resolution and supernova rate, , to delineate the regime in which an SSD occurs. For a given we find convergence for SSD growth rate with resolution of a parsec. For , with the solar neighborhood rate, the critical resistivity below which an SSD occurs is , and this increases with the supernova rate. Across the modeled range of 0.5–4 pc resolution we find that for , the SSD saturates at about 5% of kinetic energy equipartition, independent of growth rate. In the range growth rate increases with . SSDs in the supernova-driven interstellar medium commonly exhibit erratic growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.